(取石子) Alice和Bob两个人在玩取石子游戏,他们制定了n条取石子的规则,第i条规则为:如果剩 余的石子个数大于等于a[i]且大于等于b[i],那么她们可以取走b[i]个石子。他们轮流取石子。如果轮到某 个人取石子,而她们无法按照任何规则取走石子,那么他就输了,一开始石子有m个。请问先取石子的 人是否有必胜的方法?
输入第一行有两个正整数,分别为规则个数n(1≤n≤64),以及石子个数m(≤10^7)。 接下来n行。第i行有两个正整数a[i]和b[i]。(1≤a[i]≤10^7,1b[i]≤64) 如果先取石子的人必胜,那么输出“Win”,否则输出“Loss”
提示: 可以使用动态规划解决这个问题。由于b[i]不超过,所以可以使用位无符号整数去压缩必要的状态。 Status是胜负状态的二进制压缩,trans是状态转移的二进制压缩。
试补全程序。
代码说明:
“~”表示二进制补码运算符,它将每个二进制位的0变成1、1变为0; 而“^”表示二进制异或运算符,它将两个参与运算的数重的每个对应的二进制位一一进行比较,若两个二 进制位相同,则运算结果的对应二进制位为0,反之为1。
U11标识符表示它前面的数字是unsigned long long 类型。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#include <cstdio> #include<algorithm> using namespace std; const int maxn = 64; int n, m; int a[maxn], b[maxn]; unsigned long long status, trans; bool win; int main(){ scanf("%d%d", &n, &m); for (int i = 0; i < n; ++i) scanf("%d%d", &a[i], &b[i]); for(int i = 0; i < n; ++i) for(int j = i + 1; j < n; ++j) if (aa[i] > a[j]){ swap(a[i], a[j]); swap(b[i], b[j]); } status = ①; trans = 0; for(int i = 1, j = 0; i <= m; ++i){ while (j < n && ②){ ③; ++j; } win = ④; ⑤; } puts(win ? "Win" : "Loss"); return 0; }
0
~0ull
~0ull^1
1